2018 DOE Vehicle Technologies Office Review Presentation

Energy Impact of
Connected and Automated Vehicles

Pl: Huei Peng (UM)

Co-Pl:
UM: Shan Bao, Andre Boehman, Yiheng Feng, Mark Gilbert, Dave
LeBlanc, Henry Liu, James Sayer
ANL: Josh Auld, Erik Rask, Aymeric Rousseau, Ann Schlenker
INL: John Smart, Matthew Shirk

June 18-21, 2018 Project ID #EEMS001

] This presentation does not contain any proprietary, confidential, or
h“ % otherwise restricted information 1

Idoho National Laborato



Timeline

e Start date: 2015/10/01

e Enddate: 2018/12/31
e Percent complete: 80%

Budget
e Total project funding

Overview

— DOE share: $2,673,096
— Contractor share: $297,101

e Funding received in FY17:

$958,348

e Funding for FY18: $929,775
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Barriers

Lack of high fidelity models to
predict the energy impact of
CAVs--need real-world trip data
and human behavior data for
the development and
calibration of these models

Some CAV functions need
cooperating infrastructure to
function—which is lacking

Partners
University of Michigan (AA)
Argonne National Lab
Idaho National Lab
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Interactions of Project Tasks (Task 4 centric)
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Objectives / Relevance

e Deploy logging devices to assess energy usage on a
large naturalistic fleet of passenger vehicles.

e Understand human behaviors/choices to develop
better human decision models for simulations
— Trip choices/patterns
— User acceptance
e Test data used to develop model that can simulate
the impact of energy consumption at a large scale
(city of Ann Arbor) for connected and automated
vehicles (CAVs). The model will include human
behaviors and key CAV functions (adaptive traffic
signals, eco-routing, eco-approaching and departure
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Project Timeline- Milestones and Go/No-Go
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Approach/Strategy

Five coordinated tasks among three leading CAV research
organizations

Leverage the connected vehicle fleet already deployed at UoflV,
add “energy focus”.

Leverage INL’s expertise in monitoring and analyzing advanced
technology vehicle performance and driving conditions to
determine how driver behavior and usage conditions affect
energy consumption of the vehicles.

Leverage ANL’s expertise in modeling (Polaris and Autonomie)

Final outcome: tools and test platforms that can be used to
evaluate the energy impact of CAVs

\L‘L
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Task 1: Instrumentation and data acquisition of
energy related information
Capturing travel, location, speed, and fuel/energy use on
passenger vehicles (drivers’ own vehicles & fleets)
Ann Arbor, Michigan: 2016 — present.

500 FleetCarma C2 devices each plug into OBD-Il connector
Mix of powertrains (gasoline, PHEVs, EVs)

Data sent over the air to UMTRI servers & loaded into relational
databases (overall process delay ~ 2 hours)

Data supports Task 4 of this project (O/D for Polaris,
Argonne machine learning’s work, and eco-routing & -approach )

Shared with ANL, INL, EPA, UM TechlLab students
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Vehicle Fleet Statlstlcs

v Accelerated pace of recruitments in 2017 T rv—
215 devices in the database (~04/20/17) S

420 devices in the database (04/16/18)
> 500 vehicles recruited

More than 4,500,000 miles of data collected = =
v’ Efforts to recruit PHEV&EV

Powertrain Number of Powertrain Number of
type vehicles(04/20/17) type vehicles(04/16/18)
ICE & HV 211 (98.1%) ICE & HV 392 (93.3%)
PHEV & EV 4 3PHEV, 1EV) (1.9%) PHEV & EV 28 (25 PHEV, 3EV) (6.7%)
Total 215 Total 420
Number of Vehicles Model
EV 3 Nissan Leaf
14 Chevy Volt
3 Ford Fusion Energi
PHEV
Ford Cmax
2 Toyota Prius Plugin

SNL .
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Data Contents

Populated % __| Sampling Period

GPS Latitude/Longitude (deg) 97.04 % 3 (sec)
Vehicle Speed (km/h) 89.69 % 1 (sec)
Engine RPM (rev/min) 89.23 %
2 (sec)
Mass Air Flow (g/s) 69.54 %
Fuel Rate (L/hr) 2.58 %
Absolute Load (%) 72.96 %
Fuel Info Short Term Fuel Trim B1 (%) B1 alone : 49.40 % 5 (sec)
) B2 alone : 0 %
Short Term Fuel Trim B2 (%) B1&B2:72.70 %
Long Term Fuel Trim B1 (%) Bl alone:49.41 %
) B2 alone: 0% 30 (sec)
Long Term Fuel Trim B2 (%) B1&B2:72.70 %
Odometer (km) 34.09 % 30 (sec)
Ambient Temp © 95.32%
AirCon Power (KW) 93.73 9
ili o (o}
AUX|I|::||\r/\';Eower AirCon Power (Watt) 60 (sec)
PHEV & EV (HVAC)
(il Heater Power (Watt) 13.78 %
Battery SOC (%) 97.40 %
Battery Voltage (V) 78.06 % 5 (sec)
Battery Current (A) 78.06 % 1 (sec)

Is Driving, Charging (bool) -

YNL 10
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Fuel Consumption Calculation Study, EPA Data

Compared 4 methods (MAF, MAF+AFR, MAF+LTFT, MAF+AFR+LTFT) With 4 rates (0.2, 0.5, 1.0, 10.0Hz)
Suggested to speed up to 1.0Hz to FleetCarma, compromised with 0.5Hz due to data size limit

Previous : 0.5Hz, MAF
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Error distribution, 2011 Subaru Outback
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New : 0.5Hz, MAF + LTFT
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Error distribution, 2013 Chevy Cruze
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1 2 3 4
Update Period (s)
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Previgys 226 Newgz 0.26

Reference data : 10Hz, MAF + LTFT + AFR

(1.0mi<Travel Distance<10.0mi) : Daily commute range
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Technical Accomplishments Summary—Task 2

e The objective of task 2 is to develop CAV user functions
and evaluate how users interact and accept the
system:

— Designed human participant experiment

— Completed all experimental data collection

— Developed data reduction and analysis methods
— Finalizing data analysis and results interpretation

\L“\‘J 12
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Task2: Experiment and Data Collection

— Experiment conducted at MCity
e 32 participants
e 7 scenarios in both control and treatment conditions:

— Scenario 1: No speed changes to pass the green light phase- “Green
Same Speed”

— Scenario 2: Accelerate to pass green light “Green Speed Up”
— Scenario 3: Decelerate to pass green light “Green Slowdown”
— Scenario 4: Impossible to pass green light “Green Stop”

— Scenario 5: No speed changes required to pass during NEXT green
light “Red Through”

— Scenario 6: Yellow dilemma zone-impossible to go through-“Yellow
Stop”

— Scenario 7: Yellow dilemma zone-possible to go through-“Yellow
Through”

— Vehicle instrumentation P

DOE Task 2

e An existing UMTRI Honda test vehicle Veticnasincture
* Cameras (front view ,driver face and over the shoulder) IJ_H\\
e DAS, GPS and software update Ty
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Task2: Data Collection Course in Mcity

I e Drivers followed the course
& outlined in blue arrows.

e

e Data collection centered around
ME the run from the green cone to the

eTablet began receiving SPAT
information from the RSU around
(about 100 meters out)

M K. ﬂ\m L

e Argonne WK
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Task 2: Preliminary Results on Subjective Data

A post study questionnaire with 13
questions was distributed to all
participants to collect their opinions of
the system

The preliminary results were from a
subset of 25 participants who
completed the study earlier

High acceptance rate (about 82%)
Most users think the signal remaining
time and recommended speed are most
useful

A Principle Component analysis was
conducted to divide the 13

guestionnaires in to 5 categories
— User-friendliness
— Reliability and usefulness
— Distraction
— Safety
— Energy consumption

SNL
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Component

Ist 2nd 3rd 4th 5th
q4 0.807
ql 0.774  Q1: user-friendliness
93 0.763
ql3 0.742
q8 0.885
q2 0.863 Q2: reliability and usefulness
q6 0.607
q7 0.605
3233: distraction (Low distraction) _3'555
qll Q4: driving safety (driving risk) 0.934
ql10 Q5: energy saving (energy 0.835
ql2 consumption) -0.771
Eigenvalue 5.617 1.819 1.336 1.118 1.086
Percentage 43.2 14 10.3 8.6 8.4
Cumulative 43.2 57.2 67.5 76.1 84.5

15



Task2: On-going Analysis-Modeling and Predicting
Drivers’ Reaction

e The goal is to model whether and how drivers will change their

behavior. Independent variables include:

(1) Demographic information: age, gender, education, years of driving
(2) Drivers’ evaluation on this system: 13 questions from the questionnaire
(3) Traffic information: Scenarios, Speed and acceleration when the tablet

began to work

e Methods include Principle Component Analysis (PCA) for
clustering and Random Forest for prediction

Speed Profile for 25 drivers
in "Green Slowdown"
Control scenario (m/s)
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Speed Profile for 25 drivers in
"Green Slowdown" Treatment
scenario (m/s)
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Task 2: Random Forest Analysis for Prediction

Random Forest is a supervised learning algorithm, which operates by
constructing a series of decision trees at training time and merges them
together to get a more accurate and stable prediction as output.

Used to predict driver stopping behavior at intersections in this study.

Importance of each variable will also be assessed.

rf
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Task 3: Driver Behavior Modeling
e Overview
— General Goal:

e Model the impact of CAVs on people’s travel behaviors and
explore its implications for transportation energy
consumption

— Major Components:

e Activity pattern mining: data-driven approach

— Investigate the current household activity patterns in the City of Ann
Arbor

e Household activity pattern optimization: theoretical
modeling

— Study the potential impact of CAVs on willingness to share rides,
route choice, departure time choice, and energy consumption

\Ipi "I_ 18

Idcho National Laboratory




Task 3: Driver Behavior Modeling | rattern mining

e Goal:

— Extract activity patterns from trajectory data and land-use data, and
then characterize the drivers using the activity patterns

Data sources:

— Trajectory data from Safety Pilot (SP) project and land-use data

— Survey data from 396 participants of SP

e Demographic characteristics: gender, age, level of education, etc.

e Household information: number of cars, number of children in the
household, etc. T

Method:

— Principal component analysis

— Hierarchical clustering

SNL
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Task 3: Driver Behavior Modeling | pattern optimization

e Goal

— Study the impact of CAVs on people’s travel costs and willingness to
share rides at the household level

e (Question

— Since autonomous vehicles can reposition themselves, some
situations previously requiring two regular vehicles may only require
one autonomous vehicle.

— Should those households currently having two vehicles replace their
two regular vehicles by one autonomous vehicle in the future? Will
there be a lot of schedule conflicts?

e Assumption of people’s travel behaviors

— Given a list of activities to attend, household members choose their
travel mode and departure time to minimize their total travel cost

SNL

Idcho National Laboratory
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Task 3: Driver Behavior Modeling | pattern optimization

e Typical Scenario: Shared trips (schedule relaxation < 30 mins)
Member 1 Member 2

=
7 —
=
&

&
&=

o @

Time of day
Time of day

4260

2 6@

In this example, schedules
are relaxed by 12 minutes,
but VMT increases by 15%.

77777
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Task 3: Driver Behavior Modeling |pattern optimization

e Main findings (1 AV serving two family members):

e Time: the household members sometimes have to relax their work
schedules by more than 30 mins

e Energy: vehicle miles traveled can decrease due to shared trips,
but sometime increase due to detours

e |mplication:

— for family with many activities, travel far away, and have very
different activity locations and schedules, one shared AV
cannot provide the mobility needs.

— Next: Multiple shared AVs serving multiple families

\IFi "I_ 22
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Technical Accomplishments—Task 4

e Developed POLARIS regional travel demand/energy .,_lﬂ,_lllf_0|ari3 deeI of Ann Arbor
use simulation model for Ann Arbor s £ Vs

e Developed algorithms/software to convert GPS '
traces into individual travel and network .
performance data ——

e Developed machine learning framework to
estimate the vehicle energy consumption of a H
wide range of vehicles under real world driving

Work in Progress,
Pre-processing promising first results
UofM On-Road L T e —

data (Task 1)

complemented with =
Autonomie é

Validation é

simulation results PO L
RWDC) cieauiiibud N N
1 o
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Powertrain Type

M ° e Year Make Series Madel Engine Type
a C I n e e a r n I n g 2015 HONDA CR-V 4D 4WD EX-L C‘-
2015 HONDA CR-V 4D 4WD LX Q Bt
2016 HONDA CR-V 4D 4WD EX-L e"’j’( Transmission Type
2016 HONDA ODYSSEY VAN (NEW) EX Number Of gea rs
Approach and Progress -~
p p 2013 FORD MUSTANG 2D NO DATA > Engine POWer
2016 FORD FUSION 4D 4WD SE
2009 HONDA ACCORD 4D LX Dl’ag Coeﬁicient
2013 | CHEVROLET CRUZE 4D T
2015 HONDA ODYSSEY VAN (NEW) | EXL/EXL-N/EXL-R Rolllng reSiStance
2016 TOYOTA PRIUS C HYBRID 5D NO DATA
2012 | CHEVROLET CRUZE 4D ILT Vehicle Welght
2013 HONDA ACCORD 4D LX
UM Fleet data Vehicle attribute database

Vehicle Model 7~
with Fleet Aum®

Map Matching

with Fleet Model with
Cycle
Features

Data Analysis

Feature

Selection
Model with

rVehicle Drive Cycle Trl p

Each cycle is composed of several
links in which natural cubic splines
are fitted with the coefficients basis
estimated. 24

b s h
(
LABORATORY ld(mu nununmuwrmvr’—m‘m—m‘

UNIVERSITY OF
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Results - Most Fuel Economy Prediction within 5%

o = —— . = . . Vehicle Selection
Real Time Prediction of Vehicle Enerav Consumption -

Vehicle Drive Cycle Select Conventional

Vehicle ID[ Cycle ID [ RW* ML* Error . z T
129 284 27.74 29.8 7.4% o ﬁ'“\ e o e
129 285 31.25 29.66 -5.1% Mf Lt
129 288 23.32 24.09 3.3% g:‘“" ) /L l ﬂ Prediction Dash
129 290 25.01 25.1 0.4% al M_ ! B
129 297 27.38 26.7 -2.5% M/’ {7 E 'Eé:s?
130 337 41.01 | 36.04 -12.1% 2r l 2
130 338 35.75 | 36.27 1.5% w0l ‘ ' G @
130 340 30.65 | 32.02 4.5% 5 2
130 341 30.46 30.53 90.2% 00 5 1.0 {5 2'0 25 350 0.002 0.004 0006 0008 0.01
188 139 31.85 | 33.58 5.4% T e . HelmgiesRs
188 141 41.19 | 38.65 -6.2% T e S S R T Do
Hills 3 0 0.2778 0.2778 0.8334 27780 47226 W‘ 36.0454
*mpg e e s o — ol 5;: RH;R.,-,:” o e

Hill # Tl = 0014 nnad 1n

cycle_130_337mat - Back Edit Save Eomd [Ea
e Future work:

— Continue map matching work (match collected vehicle data with POLARIS
maps for route segmentation)

— Integrate ML vehicle energy model into POLARIS for mode and route
selection

— Develop traveler mode selection including energy
— Perform POLARIS simulations using ML energy model

ﬂi "l 25
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Technical Accomplishments—Task 5

e QObjectives
— Design adaptive signal control algorithms
— Implement and evaluate the models in both simulation environment
and real world testbed
e Technical Approach

— Modeling: We developed volume estimation and adaptive control
algorithms using connected vehicle trajectory data

— Implementation: We implemented the proposed algorithms in Jinan,
China
e Uniqueness
— Traffic state estimation and control using low penetration of CV data

— First large-scale implementation of detector free CV based adaptive
signal control

SNL
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Technical Accomplishments—Task 5

e Traffic State Estimation

— Consider CV as two main types:

e CV with stop = vehicles queuing ahead of the CV
e CV without stop = vehicle queue did not affect the CV

— Assume vehicle arrivals follow a time dependent Poisson process

— Maximum likelihood estimation with expectation maximization to estimate

the arrival rate

/ CV w/o stop

CV with stop

Time O

UNIVERSITY OF Ar On ne - H
Ll & asouarorr  |daho Nafional Laboratory tl’aj e CtO ries

MK Fi"l: Two example vehicle

volume (vphpl)

500

400

o
o
=]

[y
<
=

—
=]
=]

=

Penetration Rate : ~¥3%

B observed | [\[APE: 10.1% | -
[ ]estimated

7

%, @% D, T, R, Yy, Ty
Traffic volume can be
estimated accurately
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Technical Accomplishments—Task 5

e Adaptive Signal Control Algorithm
— Dynamic programming (DP) based optimization
— A baseline timing plan is generated based on historical data
— If no CV is observed during, the baseline timing is executed
— If CV trajectories are observed, the timing plan is updated dynamically
based on the estimated delay

e Testing in software-in-the-loop simulation environment:

» Drivermodel.dll =
VISSIM Data | v | Dely
Simulation Bt | el » Estimation
ignal Info
Network ASC/3 Model
| »  Virtual T Arrival
Table
Controller Optimal v
1 Signal Timing | Adaptive
Control C d
ontro” Tommane® Controller [ Plan Control
3 c Interface Algorithm

UNIVERSITY OF
MICHIGAN
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Technical Accomplishments—Task 5

* Field Implementation Process

Delay

Stops

Queue length
Oversaturation

Evaluation

 Infrastructure sensors
« Mobile sensors

Splits

Cycle length
Offset

Phase sequence
Time-of-day plan

MERUHE
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Technical Accomplishments—Task 5

* Field implementation and deployment —Jinan, China

— Multiple intersections in Jinan China are deployed using data

from Didi vehicles

— Semi-adaptive: adjust signal timing every week based on

aggregated data due to low penetration

— Close-loop control: Detection->Evaluation->Optimization-

>Detection

Before and after study

Weekend -23.08% | +30.92%
Dam]ng. Lake We.ekday 770% | +5.91%
District morning peak
(7 corridors, 43\Weekday evening 956% | +8.73%
intersections) peak
A Sa Weekday off- | o o
MAN Argme\ﬂl!-) et 18.78% | +17.14%

nnnnnnnnnn Idcho Notional Laboratory
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Responses to Previous Year Reviewers’
Comments

e QI, Reviewer 1: The reviewer said that the approach
being pursued should yield valuable data and
impactful results that the reviewer looked forward to
hearing about.

e We did not have much data last year because the
dongles installation just started. We are happy to

report significant amount of data produced (4.5
million miles).

UNIVERSITY OF A rgo n n e \.]"‘L_)
ICHIG.
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Responses to Previous Year Reviewers’
Comments

e Q4, Reviewer 6, The reviewer stated that it is not
clear how the tasks are related to each other and
whether/how delays or issues in one will affect the
others.

e We added a slide (4) to clearly show how all the
data/model developed lead to impact Task 4, which
developed a CAV model for the city of Ann Arbor.

UNIVERSITY OF A rgo n n e \.]"‘L_)
ICHIG.
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Challenges and Barriers

Data recording rate, fleet diversity, and CAN data decoding to
generate useful data for the Polaris/Autonomie models

Recruiting of volunteer drivers, especially regarding their
“confidence of the OBD dongles”

Interpreting the human behavior test results and incorporate
into the POLARIS model

Implementing adaptive traffic control requires coordination
from the City

UN{EEH G[IE';Y OF A rgo n n e \..“—)
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Future Work

Task 1: Data collection will continue, data will continue
to be shared with ANL, INL. EPA and UM researchers.

Task 2: Complete driver behavior modeling analysis.

Task 3: Analyze the impact of AVs on mobility at the
household level using an activity based model.

Task 4: Implement the new energy ML model in
POLARIS; develop new algorithm for traveler decisions
that include energy.

Task 5: Implementation of adaptive traffic signal
algorithms in Ann Arbor.

il A\rgonne \."I"\!-_) 34
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Summary

e Task 1: Collected FleetCarma data from > 500 vehicles, 550Kk trips,
4.5M miles, shared within the team, EPA, Tech Lab students.

e Task 2: Completed all experimental data collection from 32
participants, reduced driving data by using geo-fences and
conducted analysis on user acceptance and behavior measures.

e Task 3: Modeled baseline activity patterns of Ann Arbor,
conducted analysis of the impact of CAVs on traffic and energy
consumption.

e Task 4: Embedded Energy Estimation function in POLARIS based on
machine learning.

e Task 5: Traffic state estimation under low CV penetration rate;
developed adaptive signal control algorithm--Data collection from
6 intersections on Plymouth Rd, Ann Arbor.

e Two highlighted case studies using Ann Arbor data and model.

M Argne \EI“\!I_) 35
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Technical Back-Up Slides
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Technical Backup:
Case Study 1: Eco-Routing Using Real Ann Arbor Data

SNL

Idcho National Laboratory
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Fuel Consumption Model Overview

e Requirements
— Fast Enough: Can evaluate routable network cost
— Complex Enough: Can model all kinds of links

e Modeling Approach Map
matching |
“\\_\ Condame tnks }/ - Eraiss [ erspums
= N R T E N , nw\“,
AUTD T 1N -
Modeling
— Motion
Simulation information
e Expected Fuel
| Grade augment fuel Consumption
‘i . . . Vehicle
Trajectories consumption S

— Experimental Motion Trajectories Extraction
— Fuel Consumption Simulation Augmentation
— Map Matching and Link Data Driven Model Training

\IFi “I_: 38
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Data Description

« Sample Size 321,945 trips
Covered 9,745/11,506 links in the \

A 8”
‘_‘- \
L h
14-80 |
80-1498 Bl |

S

Ann Arbor area (both local streets
and surrounding highways)
— 9,999 links with more than 100
trips
— Query Criteria
— Trip length 10 min — 1 hour l
— Trip Distance > 300 m
— Total Distance: 2,281K miles —

Total Time: 93,926 hours Pl DEIRE el b e, o

Annf\lbur'(_. - ... : . o - )
Charter Twp T = ., Frain Lake

Tis3)

P -}

Superior
Charter Tw

3031 frequently visited OD pairs identified R R T R I
. . . . - CherterTwp; &7y o B e [‘harrr[l;??rldwp
80 starting locations, 123 ending locations L ¥ ey e
J_'L G_%j;‘ ; L a . -L‘_::_. . - Y ,:L'._.”I %:?P . == i s‘:hal:rtf’;;-zwp

JNL
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Model Performance

e Model: Gaussian Mixture Regression (GMR)

° Input variables 05 - Out-of-sample Test Statistics
Average Speed’
Initial and Final Speed 04 Ec;ﬂ?qﬁ"ﬁié
Average Speed O3t oo
ic.oz—
C01
o
relative ernor{%]
Model ~ |RZ  [MAPE[%] |
Average speed model 0.77 37.63
Power balance model 0.86 46.22
Neural Network 0.98 15.60

GVR LR 10.08

1. K. Boriboonsomsin, M. Barth, S. Member, W. Zhu, and A. Vu, “ECO-Routing Navigation System based on
Multi- Source Historical and Real-Time Traffic Information,” Network, vol. 13, no. 4, pp. 16941704, 2012
2. J. Kwon, A. Rousseau, and P. Sharer, “Analyzing the uncertainty in the fuel economy prediction for
— the EPA MOVES binning methodology,” SAE Int., 2007.
."l 3. W. Zeng, D. Candidate, T. Miwa, and T. Morikawa, “Application of machine learning and heuristic k-
shortest path algorithm to eco-routing problem with travel time constraint,” pp. 1-18, 2016 40
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Routing Results

. Computatlon Time: 13 s on Computer W|th Intel Core |7 and 16 G RAIVI

R AN PR
2 ~ . k I fcourde -
] If Courge ’ / : ] et - e s——
= 7 ] < b mp) PR S )
igan : ot |
%ﬂ,ﬂ- i 7 e \< et - J:T \
it e % I = | T:‘ /\' L \ _d%
LA { e AT 5 |
= ﬁ. nln \ NGRS e
1’1:" I W u P . - =i | 7\\ d [ 7 h
| l IEL | i i OGaI'uFPark i = = ' =
<=_ ZE ] ;a;.;.q/ - i § i L ’JI'Se z =3 ic) igamuég featj;suel ; - . - ‘é "A\/__
=== Shortest Route Eco Route
=== [astest Route ==== Constrained Eco Route

e Frequently traveled OD: 3031 pairs with 123 destinations and 80 origins

e Eco Routing e Constrained Eco Routing
— 21% same as fastest — 48% same as fastest
— 22% same as shortest — 23% same as shortest
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Routing Results

e Constrained Eco Routing v.s. Fastest Routing
— Max fuel saving 51.8%, max time increase 6.48%
— Expected fuel saving 5.16%, expected time increase 0.91%

e Eco Routing v.s. Fastest Routing
— Max fuel saving 51.96%, max time increase 105.06%
— Expected fuel saving 13.85%, expected time increase 8.40%

e Expected performance: estimated with OD pair frequency

-
consumption [kg] Time [s]
0.4809 611.37
0.5312 554.45

0.4576 601.04

0.5038 559.49
eco-routing
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& Conslrained Eco Rouling
% Shortest

* Fastest

* Eco Routing

Nomalized Fuel Consumption

1 12 1.4 1.8 8 2 22
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Technical Backup:
Case Study 2: Eco-approach and departure
(‘EAD’) at Signalized Intersections Using Ann
Arbor Data

nnnnnnnn
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1. Introduction : EAD Scenarios

[Single vehicle (Free-flow)]
No other vehicle near the host vehicle (HV).

HV can freely accelerate / decelerate No other vehicle near HV

Free-flow e N
Free-flow ﬁ--“" : a B a

Host vehicle (HV)

i il Lol

HV, EAD Front Vehicle
(FV)

[Multiple vehicles (Front-vehicle)]
There is a frontal vehicle (FV) which constrains the motion of HV

SNL

Idcho National Laboratory
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2. EAD Problem Formulation

» Described as an optimization problem of minimizing cost function J

* Cost function J = Fuel Consumption, Travel Time, Comfort ¢

m‘i‘n]=

tg

!
J(t) dt

Components of the optimization problem

Fuel Consumption
Transitional Cost Travel Time
Riding Comfort
Red Lights Violation
Speed Limit Violation
Hard Constraints Acceleration & Brake Limit
Synchronizing End Speed for Fair Comparison
Safety Constraint Violation (Front Vehicle case)

Initial & Final Conditions Initial & Final position and speed
System Dynamics Ma =F — Mgfcosd — 0.5pC A(v + v,,)*
« Method : Dynamic Programming to find the global optimal solution

SNL

Idcho National Laboratory
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2. Dynamic Programming Simulation Details
» Cost function is the weighted sum ¢ Comfort

* Given the hard constraints, the results (Fuel and Time savirigs) dépéndp\n Wr, We_Ends WspdChange

’
« Details of Dynamics Programming Weight$ Ry
‘/ ‘sN*
e e (‘1) Welgh_tSet',l (:".) Welght_Set,Z (‘4).We|ght._Set? (‘6) Welgh’fSetc,l
Fuel-optimal Fuel-saving Time-saving Time-optimal
wy, Fuel 100 10 0
Stage | w; g4, End Time 0 0.2 1.0 100.0
Cost -
WSpdChanges
Comfort(SpdChange) ¢ 1 0
End Speed Sync v(tf) < Vpsy — Ve OF 17(tf)> Vpsm + Ve
Invalid Speed v < 0 orv > speed limit
Hard | Final Location d(t) < ds
Const- , T
raints Red Lights Violation d(ti) € [dnode B dE! dnode + dE! ]! t; € treq
Turning Speed Violation Veyrn > Omph
FV Safety Violation TTC < 2.0(s) or Range < Rangey,
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Studied 6 Intersections
1. Eastbound, 18003 -> 18004 (Fuller Cedarband -> Bonisteel)
2. Westbound, 18004 -> 18003 (Fuller Bonistell -> Cedarband)
3. Eastbound, 18013 -> 18014 (Plymouth Nixon -> Huron Pkwy)
4. Westbound, 18014 -> 18013 (Plymouth Pkwy -> Nixon)
5. Eastbound, 18006 -> 18007 (Fuller Fuller Court -> Huron High)
6. Westbound, 18007 -> 18006 (Fuller Huron High -> Fuller Court)
All results are similar. Only one case reported below

* From SPMD, Human driving records at intersections are reproduced

« Target Intersections : Plymouth Road, Ann Arbor with 2 intersections

oy N

261 Trips recorded Westward,
Through movement
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3. Preliminary Result,

Fleet Statistics

|deal FV

man driver (Recorded BSM) vs DP, man driver (Recorded BSM) vs DP, trip #35

Fuel Saving Comparison Human arvr
100 9 P | 700 , // 700 | / / A
500 600 = g:ximm-m;;
90 r i Esm #/ Esm- /
‘ 8 400 8 !
80 : 15 =
} - gam g //
70 - } | =
E’;) 60 I '—i— 1 4 % : ; ) [1] 50 100 150 200
% -l | Time (s) Time (s)
&
§ 40+ |
| Free-flow oy 9.0g 10.6g 63.5g
30 | [ . c
i | FV 9 143g 19.8g 79.4g
20 | | . :
--------- ek e e ee == 17 %, Glidepath (Altan, Barth et al, ‘17)
10+ | | .
""""" ———mmmmmmm—m e m e e e === === 5.13%, AERIS (Capstone Report, ‘16)
5 == =
Free flow DP Front vehicle

EAD Scenario

~—~e
ME.-3 8
UNIVERSITY OF A rgo n n e

MICHIGAN [ SIEI
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4. Conclusion & Works in Progress

[Conclusion]

Eco-AND studied using real Ann Arbor trip data (real travel behavior). “What if”
traffic signal information is used, for fuel saving in an ideal setting

But, EAD is only part of urban driving :
v' Does NOT reflect fuel saving of the whole trip.

Free-flow EAD represent the upper bound of fuel saving potential of EAD
Ideal FV EAD offers estimation of the impacts of other vehicles/traffic to fuel saving

[Works in Progress]

Realistic FV case (With stochastic FV motion) : FV motion can be predicted from a
Human FV model in the vicinity of the signalized intersections
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